New Synthesis Techniques on DVB and RF

John Karnes¹, Don Bittner¹, Shannan Downey², Mike Droege², Brian Motta¹, Nicole Petta¹, Jon Streit¹, Nicolle Wilson¹

Schafer Corporation, Livermore, CA
Ocellus, Inc., Livermore, CA

The HAPL shell specifications are still challenging

- Out of round
- Wall uniformity
- Gas tight
- Smooth surface
 - < 50nm RMS
- Low cost
 - ¢ per target

Our efforts are focused on simplifying the shell production process and creating a smooth outer surface for coating deposition

• DVB

- Contains only C and H
- Better wall uniformity and sphericity
- Much easier to work with
- Stronger than RF
- Surface is rougher than RF
 - Surround the DVB capsule with a smooth skin

• RF

- Smoother outer surface
- Flexible synthesis enabling smooth skin
- Recent advances in wall uniformity
- Supercritical drying step makes them quite expensive to produce
 - Alter synthesis to allow air-drying without structural collapse

We would like to emulate the RF "skin" technique on DVB

we previously reported a technique that optimizes phase transfer RF synthesis^{*} to produce a self-assembled smooth, submicron skin

Ocellus, Inc.

We synthesized skinned RF shells using different acid species

RF shell synthesized by phase transfer of propanoic acid

Skin on DVB may eliminate surface roughness problems and result in the production of a gas permeation barrier on the shell

^{*}Ito, F., Nagai, K., Nakai, M., and Norimatsu, T.; *Macromol. Chem. Phys.* **2005**, 206, 2171.

Basic DVB shell synthesis^{*} is straightforward

The reactivity of the DVB system is thermally triggered. At a known temperature, a flurry of radicals is released within the oil phase.

*Streit, J. and Schroen, D.; Fusion Sci. Technol. 2002, 43, 321.

Ocellus, Inc.

time

We exploited dual thermal initiation^{*} to produce DVB with 'skin'

Knowing how and when initiators trigger, we introduced a water soluble monomer into the external phase, hoping that radicals (or even propagating chains) would start polymerization events at the phase interface as the DVB gelled.

*Paguio, R. R., et al.; *J. Appl. Polym. Sci.* **2006**, 101, 2523.

Our first experiment showed formation of a skin

outer surface of DVB shell

outer surface of DVB shell with 'skin'

- Our first experiment created a DVB shell with a thin, morphologically distinct skin that partially covered the shell
- We followed up this exciting result by attempting to synthesize thicker and copolymerized skins on DVB

The second DVB skin experiment produced a continuous skin

In our second experiment we increased the monomer concentration in the external phase

Simply increasing the monomer concentration resulted in a thin, continuous skin

With this technique, we discovered an interesting side effect

In all of our experiments the inner surface of this 'skinned' DVB shell also has a skin.

We believe that we can eliminate this inner skin by slightly altering this technique

Ocellus, Inc.

standard synthesis

skin forming method

wall material

We have also made progress toward an air-dried RF shell

Ocellus, Inc.

Schafer

Air drying eliminates costly critical point drying step

۲

temperature

- Conventional RF must be critical point (CP) dried to preserve small pore structure
- CP drying process steps:
 - 1) Exchange RF gel from water to IPA
 - 2) Exchange RF gel from IPA to liquid CO₂
 - Increase pressure and temperature above critical point
 - 4) Controlled venting of CO₂

Precise synthetic control is required for air drying of RF

- We know what governs the collapse of the structures
- We have synthetic control over the pore radius
- We must balance capillary pressure with the structural strength of the aerogel

 $2\gamma\cos\theta$

p =capillary pressure
γ =surface tension
θ=contact angle
r = pore radius

As the pore size increases, the RF aerogel loses its optical transparency

We have synthesized low density RF that can be air dried

113 mg/cc RF as prepared for NRL's NIKE laser (CP dried)

113 mg/cc RF (CP dried)

Ocellus, Inc.

100 mg/cc air-dried RF

95 mg/cc air-dried RF

Our next goal is to adapt this 'air-dried' synthesis to the mass production of shells

Our next challenge: increase pore size and retain the skin

- The RF system has many parameters to optimize:
 - gel time
 - acid species
 - acid concentration
 - theoretical density
 - heating cycle
 - R/C

radically different RF beads arise from different experimental conditions

Large pore RF with skin has been synthesized by the phase-transfer technique

We are making progress toward air-dried HAPL targets

- After establishing our ability to vary pore size, we conducted a survey of experiments
- Recently in this survey we synthesized an RF sphere with a density of 103 mg/cc (above) after air drying
- This bead had the characteristic smooth, thin, and morphologically distinct skin seen in previous phase transfer work

We synthesized an air dried RF bead with skin at a density of 103 mg/cc

- Retained features of phase transfer RF
- Characteristic skin (much thicker here)
- Homogenous aerogel structure
- Need additional characterization (roughness, etc.)

• DVB with Skin

 A DVB shell with a thin, smooth skin may allow us to apply a thin, gas tight coating that templates this now smooth surface

Air Dried RF

- We can air dry RF aerogel spheres
- We have increased the pore size while keeping the smooth skin
- We have learned how to make the RF skin much thicker

Future Work

• DVB

- Additional characterization
- Fine tune synthesis to optimize the skin
- Can we air-dry DVB?

• Air dried RF with skin

- Refine parameters to reliably produce air dried RF with skin
- Transfer synthesis techniques to shell production
- Investigate gas retention properties of the skinned RF
- Apply a coating to the dried shell and determine smoothness and gas permeation properties
- Investigate conversion into CRF (higher buckle strength and burst pressure than DVB or RF)

